Primary standard addressed:

A-REI. 10 Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate place, often forming a curve (which could be a line).

Additional standards addressed:

A-REI (first cluster) Understand solving equations as a process of reasoning and explain the reasoning.

A-SSE. 2 Use the structure of an expression to identify ways to rewrite it. For example, see $x^{4}-y^{4}$ as $\left(x^{2}\right)^{2}-\left(y^{2}\right)^{2}$, thus recognizing it as a difference of squares that can be factored as $\left(x^{2}-y^{2}\right)\left(x^{2}+y^{2}\right)$.

HIDDEN TRIANGLE

This problem is about the graph of the following equation in the $x y$ coordinate plane:

$$
(x-1)^{2}(y-1)^{2}=\left(x^{2}-1\right)\left(y^{2}-1\right)
$$

a) Show that the graph of the equation includes the point $(1,17)$:
b) Show that the graph also includes the point $(23,1)$.
c) Show that any point on the line $x=1$ belongs to the graph.
d) Show that any point on the line $y=1$ belongs to the graph.
e) Show that any point on the line $y=-x$ belongs to the graph.
f) (Optional) Show that if a point is not on any of the lines $x=1, y=1$, or $y=-x$, then the point does not belong to the graph. (Suggestion: Begin by factoring the right-hand side of the equation completely.)
g) Use technology to graph the equation. For example, go online to www.wolframalpha.com and type the following command:

ContourPlot[(x-1)^2*(y-1)^2==(x^2-1)*(y^2-1), $\{x,-2,2\},\{y,-2,2\}]$.

